SOFTWARE PRACTICE AND EXPERIENCE, VOL. 00(00), 001 022 (April 1997)

Workplace Microkernel and OS:
A Case Study

Brett D. Fleisch & Mark Allan A. Co

{brett|marcus}@cs.ucr.edu

Department of Computer Science, University of California, Riverside, CA 92521, U.S.A.

SUMMARY

IBM’s Microkernel, named Workplace OS microkernel [17], was the core component of Workplace
OS, a portable successor of OS/2. The basic premise of Workplace OS work was: 1) IBM would
adopt and improve the CMU Mach 3.0 microkernel for use on PDAs, the desktop, workstations,
and massively parallel machines, and 2) that several operating system personalities would execute
on the microkernel platform concurrently. This architecture would allow users to switch between
applications written for different operating systems while IBM would also benefit by having one
common platform for all product lines. The goals of the microkernel and the technical features of
design are described in this paper. We also present lessons that may benefit future projects with
similar goals.

KEY WORDS Operating Systems, Microkernels, Workplace OS

Introduction

IBM’s Microkernel, named Workplace OS microkernel [17], was the core component of Workplace
OS, a portable successor of OS/2. The basic premise of Workplace OS work was: 1) IBM would
adopt and improve the CMU Mach 3.0 microkernel for use on PDAs, the desktop, workstations,
and massively parallel machines, and 2) that several operating system personalities would execute
on the microkernel platform concurrently. This architecture would provide users flexibility as they
switched between applications written for different operating systems. Designed in cooperation
with the OSF Research Institute, the IBM microkernel was derived from the Carnegie-Mellon’s
(CMU) Mach 3.0 microkernel code. IBM envisioned it would benefit from significant cost savings
by having one common platform for all product lines.

The Workplace OS project represents one of the most significant operating systems software
investments of all time. IBM spent nearly $2 billion on the Workplace project internally or .6% of
revenues over the five year span when IBM generated $325 billion in revenues. IBM’s strategy for
the microkernel required three important components: machine independence, multiple person-
alities, and concurrent operation of personalities. Each of these aspects was heavily emphasized
in the marketing of this new comprehensive IBM strategy. Further, IBM committed significant
resources to Workplace OS as a strategic direction for the entire company much in the same way
as it had done for the IBM /360 project in the 1960s. Considerable time, programming, marketing,
money, and licensing efforts went into Workplace. Despite this, cost overruns, schedule overruns,

0000 0000/00/000000 00$00.00 Received 20" April 1997
(© 1997 by John Wiley & Sons, Ltd. Revised 23" September 1997

2 Brett D. Fleisch, Mark Allan A. Co

and technical problems plagued the project. Eventually, these issues led to the product’s failure
and the product was dropped.

In this paper, we analyze one of the most expensive operating systems failures in history from an
outsider’s perspective. By examining the vendor source code, documentation, and by contacting
IBM to supplement the assertions made in this paper, we provide insights into the technical
enhancements and improvements over Mach 3.0 that defined the IBM microkernel. We also
examine personality development and project history by tracing corporate press announcements,
published articles, web information, and adding our own software engineering insights. Finally,
we summarize the lessons learned from Workplace.

The next section outlines the new components in the IBM microkernel. A design overview of
the microkernel can be found in the Design section. The main features of the microkernel are
covered in six subsequent sections: IPC, Task and Thread Management, Power Management,
Virtual Memory Management, Logical Clocks for Real-Time Support, and Security. Finally, we
present an evaluation of the microkernel, a brief project history, a list of lessons we learned, and
our conclusions.

New Features in the IBM microkernel

Applications.

Operating System

| I— | I—

 Microkernel Interface ! '
Pl)

‘ ‘ System Services ‘ ‘

Microkernel

Hardware

Figure 1: A typical microkernel structure

A microkernel is a subsystem that provides the core functions from which other operating system
services are built. The microkernel is a layer between the hardware and various operating system
components that execute outside the kernel in user space. In the structure and organization of
a typical microkernel system (Figure 1), each system service is cleanly separated from the other
modules. This characteristic allows the system to be extended with new services without greatly
impacting other modules.

Several abstractions from the Mach microkernel* shown in Table 1 were used in IBM’s mi-
crokernel. By using CMU’s Mach 3.0 microkernel as a base for IBM’s commercialized effort,
IBM expected the microkernel would achieve rapid acceptance because of its familiarity in aca-
demic circles. To adapt the academic code for commercial use, IBM made code enhancements
to increase robustness and efficiency. In addition, new functionality included in many second
generation microkernel systems was added to the microkernel.

e Synchronous IPC is used in the IBM microkernel instead of the original asynchronous ap-
proach in Mach. This approach significantly reduced the complexity of the code. The L&

*The PowerPC version of the IBM microkernel 2.0 is this paper’s basis for technical description. We did not have
access to the Intel-specific version of the source code. Much of the source code is machine independent, however.

Workplace OS 3

Microkernel Description

Objects

Tasks Units of resource allocation and protection; each task has its
own address space.

Threads Basic computational entities or units of CPU utilization.

Messages Packets of data used to communicate in the kernel, between
user tasks, or between different kernel subsystems.

Ports Protected communication channels between tasks.

Memory objects Objects in a task’s address space; forms the basis of the vir-
tual memory system.

Table 1: Microkernel Objects and Definitions

OS microkernel[13] also implements this model.

e IBM introduced a thread migration model to the microkernel. Thread migration operating
systems include OSF /1 MK 7.1, Sun’s Spring Operating System [7], and University of Utah’s
migrating threads version of Mach[5].

e IBM added power management support to the microkernel. Although Mach and OSF/1
MK have processor idling options, neither have a devoted power management service that
developers can use to design power saving routines. This service is essential for battery
powered devices.

e IBM utilizes direct user-to-user data copy support. Instead of the two copies required in
Mach, the IBM microkernel requires only one copy. With the synchronous IPC, message
buffering in the kernel is unnecessary, and data can be transferred directly when kernel
interpretation is unneeded. The L3 Operating System [10] also supports direct mapped
copies.

e The IBM microkernel supports embedded processors that have smaller memories and com-
pact kernel requirements. The Chorus Company offers customizable operating system prod-
ucts for a wide range of embedded applications, as well.

e Logical clocks and timers are implemented in the IBM microkernel to support real-time
processes. Time adjustments are made to logical clocks instead of physical clocks.

e Security was improved in the IBM microkernel by adding support for port restricted rights
and security tokens. These mechanisms can reduce the number of security checks during

RPC.

Design Overview of the IBM Microkernel

IBM envisioned that the microkernel would unify operating systems platforms within the com-
pany and run on a wide array of processors ranging from embedded systems to massively parallel

4 Brett D. Fleisch, Mark Allan A. Co

architectures. IBM planned to limit the number of microkernel components; this reduced the
microkernel’s size, complexity, and maximized the amount of code that ran outside the kernel as
application programs. Many important components of Workplace OS were outside of the micro-
kernel including support for multiple operating system personalities. Personalities were planned
0S/2, DOS, and UNIX. IBM planned to encourage OEMs to develop additional personalities that
would operate in user-space.

IBM also envisioned that the microkernel would support embedded systems that do not possess
large amounts of memory or secondary storage, such as PDAs and set-top boxes. To reduce the
memory footprint for this class of product, subsetting, specialized libraries, and compression were
used. Specifically, the embedded microkernel uses a different task manager, device manager, does
not include the default pager, uses a subset of the name services, uses a different set of device
drivers, and uses a different run-time library. For memory management, a portion of the embedded
microkernel executable code was stored compressed in ROM thus reducing the microkernel’s size
significantly. Compression was performed when the ROM image was built, while decompression
was on-demand. Embedded microkernel memory management is described further in the VM
section.

Dominant Personality Alternate Personality
Applications Applications
Dominant Personality ' Alterate Personality ’ Application ‘ Application ‘
'| Dominant Other 1 3 Alternate Other 1
1| Personalty Dominant |; 1| Personaty Alternate |1
Server P;";_"E‘"Y ! | server Persondlity |1 OPERATING SYSTEM Application
ices H

Multiple Device IBM MICROKERNEL SERVICES

| Poducts 1

\
K !
Personality 1| Task Manager !
St Detat S0t Filesaver 1 ! ~ |
* Master Server N “;:'"p':‘ L% Nework 1 1| * mitalization Name | | Default Device Device | | Power |1
. Pager sonali !
Initialization u Y | Services 1| * Loader Services| | Pager Configuration| | Drivers | | Manager |!
* Naming S 1 * Database 1| Services Sarvices !
Device ! Engines " | '
Drivers [P 1 security }L‘ : \
|
! IBM MICROKERNEL |
! ! ! |
| Enhanced Mach 3.0 Microkefnel 1
Taks | | ! Hosand | 1/0Support ‘ 5° \\"‘& S| o < 09&’& “ﬁi |
| Vitud i i | X o
and U oMemoy | PO 1 Pocesor | and R R \0\6‘?‘ g Q@cf Wigd o &
Thieads | i 1 osds | Intermupts R & 4 & |
i i i i ! W oS S !
! |
)
l Intelx86™ l l ARM l
Machi De Machi Machi D Machi
N - N .~ o o [e [Jeye. BN
Code Code Code Code Code Code
(A) (B)

Figure 2: (a) The envisioned IBM microkernel structure, (b) The delivered IBM microkernel

Figure 2 shows the structures of the envisioned and the delivered microkernel. Although not
all of the modules were completed in the planned microkernel, most of the essential ones were.
The essential difference between the Figure 2(a) and Figure 2(b) concerns the lack of support
for multiple operating systems. In both (a) and (b) the operating system is located outside the
microkernel and uses the services at layers below. The delivered system was split into three major
components: Personalities, Microkernel Services, and Microkernel. Shared library support was
also provided.

Operating System Personalities

The envisioned microkernel Figure 2(a) shows support for multiple personalities. The dominant
personality provides the primary operating system visible to the user. The alternate personalities

Workplace OS 5

were designed to provide additional operating system services to the user concurrently. Per-
sonalities supply two essential components: the application program interface (or API) and the
application binary interface (or ABI). The API provides the set of functions that the person-
ality exports, and thus the API contracts what functionality the personality implements. The
ABI dictates the format of the binaries that the personality executes. A UNIX personality need
only support the POSIX API. However, an AIX personality must execute native AIX binaries in
addition to supporting the AIX API.

There are three reasons why personality support was important to IBM. First, DOS, Windows,
and Mac programs are currently the dominant software on store shelves. Obtaining shelf space
for a new incompatible software variant would be difficult, even for IBM. Second, users expect
not to discard significant investments in software applications, no matter how impressive the new
operating system promises to be. Third, compatibility for the PowerPC was essential in order for
users to adopt it. The Power Personal System Division’s success required that software products
provide ABI compatibility. Personalities protect the user’s software investment in addition to
providing a necessary and familiar API.

The delivered microkernel shown in Figure 2(b) shows support for only one operating system. As
we will see later, personality development was one of the most significant problems in Workplace

OS.

Microkernel Services

Many personalities have similar functional components. IBM envisioned a generic version of
these common components could be designed for use in a shared manner. IBM calls the shared
services that are common to several operating systems Personality Neutral Services (PNSs). PNSs
shown in Figure 2(a) reduce the size and complexity of each personality, and maximize the amount
of shared application code. Networking, file systems, scheduling, paging and security services are
examples of PNSs. In some systems such as Windows-NT it would be quite hard to extend
the operating system scheduler to support real time scheduling. In Workplace OS, a real-time
scheduler could be easily substituted as a PNS component in user space.

The delivered microkernel shown in Figure 2(b) provides no PNSs, although there were shared
services. Important components in the delivered Microkernel Services are:

Task Manager This service is responsible for initialization and loader services. After initializa-
tion is complete, control is transferred to the task manager which loads the paging, naming,
and other programs that execute early in the initialization sequence. The loader can be left
active to load additional programs or to attach new libraries.

Name Services Name Services enables clients to locate service providers or to register as a ser-
vice provider. This service maintains a hierarchy of named objects and contains information
to contact servers, access system devices, or locate system data objects.

Device Configuration Services This service is responsible for locating and managing all 1/O
related hardware visible to the system software. It determines which I/O hardware is active
and grants access to it.

Power Management The microkernel provides APIs for user programs to control devices that
can be powered down. With this facility, one can construct programs which save power.
Since the power management system controls devices rather than allowing programs to
control devices directly, the facility also makes management more secure.

6 Brett D. Fleisch, Mark Allan A. Co

Microkernel

Both the envisioned and delivered microkernel have identical components, except that the
delivered microkernel contains a trace facility. The base components consist of:

Interprocess Communication The IPC system allows threads running in different tasks to
communicate. The system supports reliable delivery of synchronous messages on ports.
The sender must be prepared to block until a receiver is found and the data is transferred
to the destination task.

Task and Thread Management The IBM microkernel manages the program execution envi-
ronment and the scheduling of the threads. A task consists of an address space and a
collection of threads that execute in that address space, as in Mach.

Virtual Memory Management The virtual memory component provides support for large,
paged, sparse address spaces composed of memory objects. The IBM microkernel manages
memory protection and sharing of memory objects. Address spaces are managed by mapping
or allocating memory objects within them. Copy-on-write is used when a new address space
is created to inherit memory objects and avoid copying pages. Only when a program updates
pages are copies made.

Others 1/0 support, Host and Processor support, and a Trace Facility are also supported in the
microkernel. The I/O support provides access to I/O resources. Host and Processor support
provides boot services, clock services, processor management, and scheduling services. The
trace information generated by the Trace Facility assists debugging, problem determination,
and performance analysis.

Shared Libraries

An executable’s run-time environment is a function of the underlying threads package, the OS
personality, and the services employed. Because the IBM microkernel provides multiple execution
environments, the ABI of the platform and the behavior and requirements of these services are of
particular concern to a shared library designer. Usually shared libraries are explicitly selected and
linked with the executable. These libraries will require execution environment-dependent services
or execution environment-independent services. The execution environment-dependent services
include routines to create threads, terminate threads, and obtain thread IDs. A dynamically linked
library (DLL), or shared library, can be linked to tasks running in different execution environments
if the library does not directly use any of the execution environment-dependent services. A shared
library is called a common shared library (CSL) if it satisfies these requirements.

IBM considered ways to support separate independent and dependent code portions for DLLs.
One approach was to use a different version of the execution environment-dependent library for
each different execution environment. At link time, proper versions of the execution-environment-
dependent shared library could be linked. However, this approach was not adopted because it
would present substantial management difficulties. Instead, IBM chose to provide an Operating
System Abstraction (OSA) layer for libraries that provide support for multiple execution envi-
ronments. OSA functions provide execution-environment-dependent services (threading package
services) to shared libraries. When the library is loaded, the OSA functions are initialized for the
proper execution environment in which the task is running.

Workplace OS 7

[PC Management

One of the most significant changes IBM made to the microkernel was in the IPC subsystem.
The IBM microkernel supports interprocess communication (IPC) optimization by restricting
interactions to synchronous IPC. This style of communication requires the sending thread receive
a reply from the recipient before it can proceed. Interactions are restricted to using one-way
messaging or synchronous two-way remote procedure calling (RPC). As observed by Cheriton [2],
the complexity of queueing multiple messages is eliminated using synchronous IPC, since each
message requires an explicit response before it can proceed. Receives need only save one message
at a time and the elimination of lengthy message queues reduces complexity. In addition, the
in-microkernel RPCI[8] means: 1) reply ports will not be needed by either the RPC client or
server code, and 2) reply message formats can be tightly coupled with request message formats.
The effect of the former is simplification of message formats. The effect of the latter is that
user-level code can avoid performing message format verifications for each reply, thus improving
performance.

To support the tight coupling of request message formats with replies, the IBM microkernel
uses portclasses and signatures. Specifically, every port is created as an instance of a portclass.
The portclass defines the format of messages that can be transferred through ports of a particular
class. This permits a small constrained set of message formats to be pre-registered with the IPC
system once and avoids the Mach overheads in verifying message format correctness during each
message transfer. Nonetheless, portclasses do not handle dynamically created message types,
which IBM claimed required excessive overhead to process. Therefore, to handle message formats
that are not known at portclass creation time, a portclass can be defined so that message formats
are presented at transmission time. The microkernel associates a signature with each request
and reply message. The signature defines how the data is to be interpreted and passed by the
IPC primitives; signatures are not allowed to be changed after the port is created. This allows
senders and receivers to check the registered message formats once and then confidently use the
port without concerns of message format changes. IBM claimed this optimization reduced the
amount of overhead associated with runtime checking during RPC, since reply message formats
can be tightly coupled with request message formats using the same signature.

Adoption of synchronous microkernel-supported RPC eliminated some port right difficulties
with two one-way communications (logical RPCs) that occurred in Mach 2.5 and 3.0. The mi-
crokernel provides notifications to inform clients and servers when changes in port-rights occur
such as deletion of a port, when a receive right for a port is destroyed, or when the last send or
send-restricted right for a port is deallocated. Problems between clients and servers arose when
a client opened a connection to a server and the client specified a reply port to communicate on.
That reply port was used once during initial connection setup and usually discarded. However,
logical RPCs did not leave a client failure-isolated from the server. Servers had to receive and dis-
card many unwanted port-deleted notifications during normal client shutdown because the server
stored a copy of the initial reply port used to establish the connection. Further, clients could
not rely on the server’s integrity. Because of this, an errant server could flood a client that made
an initial connection to it earlier with many messages on its initial reply-port. Mach 3.0 solves
these problems using a send-once right. A client that makes a logical RPC call allocates a reply
port, holds the receive right to it, and sends that right in a message to the server as a send-once
right. The server replies to the send-once right, removing the right immediately from its name
space. Since the right is immediately destroyed once the reply occurs, this eliminates unnecessary
notifications when the port is destroyed later[18].

8 Brett D. Fleisch, Mark Allan A. Co

Because Mach did not support a microkernel-based RPC, reply ports had to be supplied by
the user-level code and there was additional overhead, in each direction, for port name lookup
and management. In addition, there was overhead to track which reply ports were associated
with which threads. On the other hand, IBM’s microkernel-supported RPC maintains the reply
port inside the microkernel, stored in the client thread structure. This permits IBM to eliminate
the send-once right, since the microkernel manages replies through direct thread linkages where
the client thread and server thread are bound through the client’s reply port. Also, microkernel-
supported RPC obviates the need to insert the user-supplied reply port in the server. Instead,
when the reply message is sent across the reply port, the server loses its internally-managed send
right to it automatically. Thus, synchronous IPC considerably simplifies port management and
code complexity.

In addition to the basic send and receive rights adopted from Mach 3.0, IBM has added a
send-restricted right. This modified send right is identical to the normal send right except that
this right is prevented from circulating between tasks whose security levels are not equal. Since
IBM hoped agencies such as ARPA or DOD would adopt the microkernel, this right could be used
to implement multi-level security policies or to improve RPC performance. Security mechanisms
are described further in the Security Section.

Thread Optimization for RPC and Scheduling

The IBM microkernel supports multi-threaded programming with support for both user-level
threads and kernel-level threads. The microkernel itself uses kernel-level threads to provide inter-
nal support functions such as page eviction, thread reclamation, and scheduler priority computa-
tions. The C-threads run-time library [8] is used to manage user-level threads. The implementation
of C-threads calls microkernel thread functions when C-threads are created or destroyed. The IBM
implementation of C-threads supports preemptive scheduling and parallel execution.

IBM devoted considerable attention to improving threads support. The goal was to avoid many
performance penalties usually associated with microkernel systems. One source of penalties arises
from locating the operating system server in user space and using a single, general-purpose IPC
message mechanism to implement RPC. This adds significant overhead to the system call path and
makes OS access to kernel or user memory costly[3]. However, when programs shared the same
address space, it is possible to replace IPC message-based RPC with a form of direct procedure
call known as short-circuited RPC[3]. Short-circuited RPC is many times more efficient than
message passing and provides significant performance improvements.

IBM adopted a version of the Utah migrating threads mechanism to support short circuiting.
Threads are divided into two separate entities called the thread body and shuttle. The thread
body represents the execution context of a computation and retains all resource information. The
shuttle comprises the scheduable entity, meaning it holds the priority and the resource accounting
attributes. Under normal circumstances the roles of the thread body and the shuttle are not
visible. However, when RPC is invoked, the two entities are used. Specifically, a client thread
gives up its shuttle to a server thread which claims the shuttle. Figure 3 illustrates thread
migration.

IBM’s changes to the thread structure were designed to improve RPC performance by reducing
the overhead associated with context switches for a typical RPC call. Specifically, in the origi-
nal Mach 3.0 static thread implementation, a thread performing an RPC required two context
switches. The client thread needed to be swapped out and replaced by the server thread, then

Workplace OS 9

Thread body C Thread body B Thread body A
Shuttle: A Shuttle: A Shuttle: A
Thread next : null Thread next: C Thread next: B
Thread previous: B S \ Thread previous: A, Thread previous: null
7

-

Shuttle A
Curr. thread : C

Figure 3: Thread Migration process

swapped in again. Using the migrating thread model [5] a full context switch is unnecessary
since thread information is embedded in shuttles. The scheduling information associated with
the client is formally handed off to the server for the duration of the RPC. Only the address
space and some subset of the CPU registers needs to be switched. In addition, rescheduling is not
required since there is no need to search for higher priority work in the system because the client
thread’s priority is used. A factor of 3 to 4 performance improvement was reported when using
this technique in the Utah work[5].

For scheduling, IBM supports a range of policies for environments including multiprocessors,
workstations, and PDAs. The microkernel implements the mechanisms to manage the physical
processors, where each processor is a member of a processor set. The processor set schedules
a subset of the threads using one uniform scheduling policy. Each thread has an associated
scheduling policy inherited from its containing task which governs how the processor set schedules
the threads.

Numerous scheduling policies support the wide range of environments and architectures that
the designers envisioned for the microkernel. The policies include the First-In-First-Out (FIFO),
Round-Robin, and a Timeshare scheduling policy. The PDA scheduler uses a very simple thread
scheduling policy that uses 256 priorities[12]. A numeric priority is statically assigned to each
thread and the highest priority thread is allocated the CPU. However, problems were anticipated
between different application designers fighting for superior performance. Some application writers
could chose thread priorities that monopolize the PDA. IBM stated that the solution to this
problem was not a technical one, but a business one. Unfairness from specific problem applications
would be readily apparent and the marketplace would reject monopolistic software.

Power Management

The IBM microkernel provides a Power Management Framework to manage devices that are
sensitive to power concerns. The Framework matches the physical organization of the underlying
hardware. The hardware itself is managed through the manipulation of the power management
model represented in the Framework. Programmers can implement specific power management
strategies for hardware devices using this Framework.

Figure 4 shows the relevant objects in the power management architecture as defined by IBM[9].
The power management policy object provides the implementation of a specific power management
policy. This policy describes all the rules for managing power among all the different hardware
devices that the policy controls. The relationship between a policy object and its controlling policy
is established through a specific interface. If a policy object is not attached to a specific policy, no
events can be sent from that object to the controlling policy. Managed objects represent physical

10 Brett D. Fleisch, Mark Allan A. Co

components in the system and describe various topological constructs used to construct a model
of a computer’s power system. Five managed objects are of particular concern: power envelopes,
event sources, power objects, power consumers, and power suppliers. Power envelopes shown in
Figure 4 represent the power domains in a system; they describe units that consume and supply
power. Envelopes are used to organize the topological constructs so they match the physical
system layout. Fwent sources, also shown, notify the power management system of important
changes that should be relayed to the power policy. For example, the spinning down of a disk is
an event of interest to the power policy. Power objects represent the power attributes of physical
components such as devices, as shown in Figure 4. Typically, there is one power object for each
device. Lastly, power suppliers represent components such as batteries, power supplies, and UPSs
and power consumers represent components such as LCD displays, modems, and processors.

Power Management
Policy L egend

VY

Power Management Policy

"Physical" Device

m) 10 Q)

(O
a@is 57

Power Management "Aware"
Device Driver

Event Source

: /)
5
g l/ Object
API
i Oﬁ'ls\\ Event Source &
g Power Managed Object Binding
g’ — APl é/ Binding to a Power Managed Object
s [|cals % <_>O Power Envelope
;

Figure 4: Power Management System Components

A typical device driver can be made power aware by integrating the device driver into the
Framework. To convert a conventional device into a “power aware” device, each device driver
must support a power management object. That object must be attached to the Framework
through a power envelope. Figure 4 shows one (or more) power management object(s) attached
to a power envelope and one power management policy attached to the same envelope. Typically
the envelope will contain several event sources and several power managed objects. Policies must
attach themselves to envelopes in this Framework. When the policy is attached to an envelope,
the policy can manage the power for all objects in the envelope. There is one policy associated
with each envelope and thus one uniform policy may control several devices. Once the policy
(object) is attached it can receive messages that contain event notifications.

Events are generated by power management objects and directed to event sources instead of
directly sending events to policy objects. These event sources are part of the power envelope
and are explicitly created. The types of events that can be generated from event sources are
predetermined and fixed; event types cannot be changed. An object may have several event
sources associated with it, but an event source is associated with only one event. The event
source sends the event onto the policy or it may delay the event for a predetermined period of
time. Event sources can be masked to prevent events from being issued even if an event occurs.
Both event sources and power managed objects must be bound to an envelope explicitly.

The Framework uses Service Provider Interfaces (SPIs) as a means for the Framework to call
external routines provided by the policies or the object implementations. Two types of SPI calls

‘Workplace OS 11

can be made: Object SPI calls or Policy SPI calls. For example, SPI calls from the Framework
to the policy (Policy SPI calls) can notify a policy of an event. In return, the policy reacts to
the events with a set of predefined actions and makes calls into the Framework using the API.
Typical events that may be of interest to a policy include the state of a device being powered on
or off, a device’s screen dimming or brightening, or a disk spinning up or down.

| Call Type | API | SPI || Call Type* | API |
Generic Object 6 4 Conduit 3
Event Source 6 6 Envelope 3
Object with States | 13 12 || Event Generation | 14
Policy 8 19 || Platform 6
Power Object 2 1 Framework 15
Transition 4 2 Representative 2
State 4 2

| Total | 43 | 46 [Total | 43]

Table 2: Number of System calls for Power Management System

Table 2 reflects the considerable effort IBM spent on the power management system. Over 130
new calls were added in 11,437 lines of code. IBM also produced a 450 page Power Management
user manual that describes the functions, parameters, message flows, and return values for power
management in more detail[9].

Virtual Memory Management

IBM enhanced the PowerPC version of the Virtual Memory (VM) subsystem with: direct user-
to-user copies, an improved default memory manager, and embedded system support!. For the
first, the PowerPC uses the block address translation table (BAT)! to support direct message
transfers from the sender’s address space to the receiver’s address space. The PowerPC BAT
maps a large block of data into pinned, contiguous real memory. A “cross-mapped” address is
established for the BAT to transfer the data using mapping techniques rather than copying. To
transfer the data the target address space must “cross map” the sender’s data addresses into its
own page maps. The cross mapped address must be a power of 2, it must be 128KB to 8MB, both
the starting and effective addresses must be a multiple of the range, and for the PowerPC 601,
the effective address range cannot overlap any of the effective address ranges being used for other
cross-mapped operations. If these constraints are met, and the message needs no translation, the
microkernel can reduce the number of message copies to one copy?®.

*There are no SPIs for these calls.

*We did not have the Intel source code to confirm similar support for the Intel platform, but documentation
indicates similar support is available on the Intel.

1This is specific to the PowerPC.

§The cross-mapped address table is stored in the thread structure to assure its state is preserved in case a page
fault occurs.

12 Brett D. Fleisch, Mark Allan A. Co

For the second, the VM default memory manager manages temporary non-persistent memory
objects. Memory backed by the default pager is called anonymous memory. Anonymous memory
has no named port associated with it and is stored in a cache of physical memory. To manage the
anonymous memory more effectively, IBM improved the implementation to use four queues instead
of the three used in Mach. These queues are called the inactive, active, free, and prefault queue.
The new prefault queue is used to store prefetched pages from disk; this optimization returns the
page more quickly than a traditional fault which must wait for the page to be returned.

IBM used care when adding the new prefault queue. Because the prefault queue consumes
memory, the VM module was adapted to support situations when memory is low. Specifically,
the IBM microkernel cannot count on external pagers to free memory since external pagers are
non-privileged and may be stalled waiting for free memory. Instead, the code was adapted to
reclaim memory from the prefault queue prior to reclaiming memory from the inactive queue.
Additionally, pages are carefully dribbled from the active queue to the inactive queue to assure
that pages on the inactive queue get a second chance to be referenced before they are reclaimed.
Care in flow control guarantees that pagers keep pace with microkernel operations. In addition,
when memory is very low, pages are not paged out to disk since paging operations consume
memory.

For the third, the embedded microkernel VM does not include the default pager found in the
base microkernel since there is no paging or conventional secondary storage as in workstations.
Instead a compression (CMP) memory manager is used that stores components of the microkernel
in compressed form. For performance reasons, frequently referenced performance-critical sections
of the microkernel are not compressed and execute in-place. Nonetheless, IBM states that roughly
50% of the embedded Microkernel can be compressed[8]. For example, user tasks and microkernel
service tasks, in addition to a number of kernel services, can be compressed. IBM also planned
a Microkernel File server with a reduced footprint FAT file system. A reduced footprint server
would have fewer APIs and less functionality for embedded systems.

When a page fault occurs in the embedded microkernel, CMP memory manager routines are
invoked. The CMP pager acquires a page frame in RAM and decompresses the ROM code into
the RAM memory. This decompression is performed dynamically as the ROM pages are accessed.
Once a page is decompressed, accesses to that page are diverted to the new page in RAM. This new
page is marked defective. Defective pages contain addresses that have no meaning because they
have been moved without internal addresses having been translated. Several functions called from
the fault handler perform patching which fixes the defective pages. The patching converts absolute
addresses in ROM pages, RAM pages, or virtual addresses, to absolute addresses in RAM pages.
The lack of translation hardware in embedded systems requires this manual software translation
process.

Lastly, for the microkernel programmer using the VM subsystem, the IBM microkernel adds
functions that allow users to provide hints to the page eviction and prefetch algorithms and to
provide paging advice concerning the expected amount of reads, writes, and inactivity for certain
memory ranges. These hints can improve performance.

Logical Clocks for Real-Time Support

IBM’s goals for the microkernel included support for real time processing. Nontheless, real-time
application support can be a challenging issue since real-time applications have substantially dif-
ferent performance and operational criteria than conventional operating systems applications. For

‘Workplace OS 13

example, the microkernel must support preemptibility, provisions for adequate real time process
scheduling, main memory scheduling, and cache scheduling. Whereas conventional performance
criteria emphasizes average performance, real time applications must bound worst-case perfor-
mance. Some of these issues require new policy modules that can be outside of the microkernel.
For example, scheduling policies and memory management can be embedded in policy modules
that are support by the microkernel but external to it in handlers or policy modules. These
modules can be easily changed to support new policies without changing the microkernel itself.
Thus, IBM expected few actual changes to the microkernel for real time support and expected to
use one base microkernel for real-time and non real-time applications. Nonetheless, we do focus
on the one main feature that IBM added to the base microkernel to support real time processing:
logical clocks.

In many systems, problems arise when users adjust the time because certain clock properties
must always hold. First, the values returned by the physical clock must be monotonically non-
decreasing. Although the offset may be a negative value (to preserve the time continuity), the
rate can never be less than 0. Second, both relative time* and absolute time' are restricted to
positive values. If there are any real-time processes executing on a processor, care must be used
when modifying the physical clock or problems may arise. Nonetheless, users may wish to adjust
the time because: (a) an initial setting of the clock may be needed, (b) the clock may need to
more accurately reflect the passage of real time, and (¢) political time changes may be needed
(daylight savings, leap seconds, etc.).

IBM introduces the logical clock object to support real-time processing in the microkernel. Log-
ical clocks abstract modifications to the physical clock by preventing direct access to it. Only
logical clocks can be read and modified. Logical clocks smooth the effect of abrupt time cor-
rections that result from forward and backward corrections by clock synchronization protocols.
For example, since more than one logical clock is allowed, it is beneficial to use one logical clock
directly in the synchronization protocol but to read time from another logical clock that amortizes
the adjustments made to the first clock. This prevents time from appearing to run backward.

Logical clocks can be used to support timers. Alarms are used to inform a thread of a prede-
fined periodic passage of time as measured by a timer. The alarm can either be synchronous or
asynchronous with respect to the execution of the target thread. For synchronous alarms, only
one alarm can be set per thread. For periodic asynchronous alarms, a timer is created explicitly
and a timer port is returned.

Security

The IBM microkernel provides security using 1) traditional tasks and port rights, 2) security
tokens, and 3) restricted port rights. Tasks support memory objects that can be mapped into the
virtual memory address range with specific protection rights. When machine instructions attempt
to access specific address ranges, access permission is verified. Since ports represent services, port
rights are used to protect access to services. A task’s port rights are increased as additional port
rights are returned from RPCs or by third parties that insert new port rights locally. Task special
ports are used to represent initial privileges to services such as a host port, bootstrap port, or
kernel task port.

*an interval time whose starting time is the current time
fa point of time relative to the origin of the clock

14 Brett D. Fleisch, Mark Allan A. Co

Security tokens identify a subject in the security system. Security credentials are presented to
authorize subjects to gain access to resources. For example, a typical security service allocates
security tokens and maintains a mapping between security tokens and security context informa-
tion. Each security subject may have several tasks that need to work on its behalf. Tokens are
used to identify subjects with a credential. Three special types of token are: task-security tokens
which identify the task making a request, thread-prozy-token which identifies the privilege of the
service requester,’ and the task-prozy-token which manipulates the thread-proxy-token values for
the task’s threads.

At the request of the server, the sender’s security token can be attached in an unforgeable
manner to every message that the sender directs to the server. Servers can use the token to contact
an authorization service to convert it into a set of credentials which can be compared against the
actions being requested. The IBM design allows the token-to-credentials relationship to be cached
in the server and for a special form of send-right to represent a pre-approved authority to perform
certain actions. For example, if a message arrives on a port for which only restricted-send-rights
have been created, the server assumes that the actions are authorized since restricted-send-rights
can only be moved or copied to a task with the same task-security-token. Without restricted-
send-rights, send-rights could be propagated in an unrestricted manner, requiring the server to
repeatedly verify the sender.

An example may illuminate how these security mechanisms can be used. Consider a patient
who fills a prescription at the local pharmacy. If a physician prescribes a drug and this written
prescription is taken into the pharmacy, the pharmacy must take the time to contact the physician
to verify the prescription’s authenticity. Also, the pharmacy must assure that the patient’s health
plan permits the specific drugs. This action is similar to the message authentication when there is
a security token attached. However, the nurse could 1) call in each prescription on a secure phone
line and the pharmacy could have a “caller-id” box and 2) the nurse could verify the patient’s
health insurance. These actions save time for the pharmacy since authentication and permission
are not needed. In this latter case, the pharmacy merely dispenses the medicine assured the
prescription is authentic and allowed.

If a patient selects a pharmacy that is out of medicine, the pharmacy may help the patient
locate a nearby pharmacy that can fill the prescription. In this example, the prescription can be
authenticated at the pharmacy but not filled. The pharmacy can establish a secure channel to
transfer the prescription to another location. This is similar to each pharmacist possessing a task-
security-token and using restricted-send-rights. Only registered pharmacists may communicate
in this manner, obviating the need for authentication. Indeed, restricted-send-rights have the
property that they can be moved or copied freely between entities with the same security token.
This can save the patient time and provide for faster location of needed medicines.

In summary, with restricted-send-rights a server need only validate the client once. Thereafter,
because the subject’s credentials have been checked, and because restricted-send-rights can only
be transferred between tasks with identical task-security-tokens, strong guarantees can be made
concerning the validity of the request. Restricted-send-rights can increase server performance
because the burden to check credentials can be performed once and only once.

i This token is used when a server wishes to take on the identity of one of its clients

‘Workplace OS 15

Evaluation

In this section we examine the quality of IBM source code. We compared Workplace software
to Mach 3.0* using various measurement programs. Aside from the normal readability measures,
both Halstead’s metrics and McCabe’s cyclomatic complexity metric were used on the source
codes[1, 4]. Halstead’s theory of software science is probably the best known and most thoroughly
studied composite measures of software complexity. McCabe’s Cyclomatic Complexity measures
control flow complexity.

Our analysis was performed with a measuring package named C' Metrics'. The package was used
to measure Purity Ratio, Volume, Effort, and Cyclomatic Complexity. In particular, purity ratio
is a measure of the code optimization: a measure greater than 1.0 indicates more optimized code.
Volume measures a program’s size using the quantity of operators and operands as parameters.
Effort reflects the number of mental discriminations a programmer performs to write a program.
Each mental comparison consists of a number of elementary mental discriminations and indicates
a measure of program difficulty. Cyclomatic Complexity measures control flow in a procedure
based on the number of decision statements. The program C_COUNT wver?.0* was used to count
code lines?, comment lines’ and grep was used to count the number of assert statements. In
addition, we constructed a program to count the number of lines per procedure, the number of
procedures or functions, and then computed the averages. Table 3 gives the results.

MACH IBM

[PC | VM | KERN | TPC_| VM [KERN | CLOCK | PWRM | TRACE
Code | 12089 | 9149 | 13799 || 10142 | 23755 | 16901 | 6386 | 11437 | 3068

Cumt | 4629 | 4961 | 5375 | 7221 | 10762 | 8257 | 2768 | 3776 | 937

Cmnt/ 0.382 0.542 0.389 0.711 0.453 0.488 0.433 0.330 0.262
Code

Procs 239 173 464 142 310 444 206 327 90
Ln/Proc| 50.6 52.9 29.7 71.4 76.6 38.1 31.0 35.0 34.1
Asserts 718 94 77 414 412 322 11 0 9

Purity 1.38 1.38 2.08 1.77 1.45 2.04 1.69 2.34 0.83
Volume | 358739 | 255005 | 449972 || 263177 | 756480 | 574271 | 203687 | 263227 | 73153

Effort 111 56 310 98 376 382 61 130 3
(x109)
CC 7.4 5.7 3.7 4.8 5.8 3.4 3.6 2.8 3.2

Table 3: Static Code Evaluation Results.

*Available via ftp at mach.cs.cmu.edu in /src/mkernel.

T Available via ftp at ftp.wustl.edu in /languages/c/unix-c/utils.

! Available via ftp at sunsite.unc.edu in /pub/Linux/devel/lang/c.

§Including lines for preprocessor.

TCode lines consist of lines containing code and preprocessor instructions. Comment lines consist of comments

on separate lines or comments appearing on the same line as source code. Copyrights and RCS histories were not
counted in the total comment lines.

16 Brett D. Fleisch, Mark Allan A. Co

| Measure | Formula | Comments |
Purity PR=N/N A measure of code optimization. A low ratio sug-
Ratio gests that there is excessive code. The higher the ra-

tio above 1.00, the greater the optimization in the code.
Classes of impurities include complementary operations,
ambiguous operands, synonymous operands, common
subexpressions, unwarranted assignment, and unfactored
expressions.

Volume V =N xlogyn An appropriate measure of program “size”. Since the size
metric should not reflect the number of characters used,
it is expressed in bits. This length depends only on the
number of elements in the vocabulary.

Effort E=V/L Reflects the number of mental discriminations required
L= 2/n1 X ng/Ny | to reduce a preconceived algorithm to an actual imple-
mentation. This measure seems to correlate highly with
experience.
Cyclomatic | V(g) =e—mn+2 | Measures control flow in the function based on the num-
complexity ber of decision statements in the code. Extended cy-

clomatic complexity includes both decision-making state-
ments and decision-making predicates.

Legend : m1 = number of unique operators; ny = number of unique operands; » = number of unique
operators and operands; N1 = total number of operators; N» = total number of operands; N = length as

determined by N = Ny + N»; N = predicted length as determined by (n1 X log, n1) + (n2 X log, n2).

Table 4: Definitions for Halstead’s and McCabe’s metrics.[4]

The results from these measurements provided significant insights. The IPC module of the IBM
microkernel was reduced in size by approximately 16%, nearly 100 procedures or functions were
eliminated, and the ratio of comments to code increased 33%. This is consistent with the assertion
that the complexity of the IPC was reduced by using synchronous IPC and indicates careful coding
practices were used in the IPC module. The purity ratio of the IPC module increased by .39,
meaning the code was optimized when IBM changed the IPC system. The comparison of cylomatic
complexities of the IPC modules shows that the code was less complex than before. In addition,
Figure 5 also confirms a reduction in the number of IPC functions. However, the number of
procedures with more than 140 lines of code was not significantly reduced by the IBM effort.

The IBM VM module which includes new RPC specific routines, an expanded default memory
manager, and support for the embedded microkernel has more than doubled in code size. The
ratio of comments to code decreased by 9%, the number of lines of code per procedure increased
by roughly 30% on average, and over 120 new procedures were created. We find this particularly
disturbing because VM code is often the most challenging to understand and good commenting, of
small, well-decomposed functions is essential. Figure 5 shows this increase in number of functions,
and more disturbingly, the number of functions greater than 140 lines. The increase in the volume
of code supports the claim that this module was vastly expanded. The purity ratio of the VM

‘Workplace OS 17

code increased by a small margin; however, the effort value for the IBM VM module was increased
6 times than the original. In the VM code, there were many places where the code was replicated,
with only slight variations. Several mismatched commenting styles were observed in the pmap
module.

IPC module KERN module ¥M module B 50k

g0
1]
40
20

B 18M 1k B rach MK

B 1BM MK

Mach MK Mach MK

Ho. of Procedures

Ho. of Procedures
o
=

No. of Procedures

] =]
o o] \ \
o o o7 o o

s @ - wi I o= oF

> 140 B

= = o -
Lines per Procedure Lines per Procedure Lines per Procedure
CLOCK module PWRM module TRACE module

[:: NEINANT B EM MK B iBM MK

Ho. of Procedures
Ja
=
No. of Procedures
No. of Procedures
r
=

0- 15- 40- &0- > Do \ 0- 15- 40- &0- s
15 40 a0 140 140 L = 2= 15 40 an 140 140
Lines per Procedure Lines per Procedure Lines per Procedure

Figure 5: Size of microkernel procedures.

The KERN module increased in code size by 20% with a proportional increase in comments.
IBM eliminated 20 procedures or functions. However, of the various modules we examined, this
module appears the least changed statistically. The modules CLOCK, PWRM and TRACE add
623 new procedures or functions averaging roughly 31 lines of code per function. The purity ratio,
module volume, effort, and cyclomatic complexity differed marginally from Mach’s.

The CLOCK and PWRM modules appear to have highly optimized code. In fact, PWRM has
the highest purity ratio of all the modules and also the lowest cyclomatic complexity, leading
us to believe that this module was planned and implemented carefully. On the other hand, the
TRACE module possesses the lowest purity ratio even if it has the lowest effort value.

The number of assert statements in Workplace is also revealing since asserts can greatly improve
the reliability of the code and help locate bugs. In the IBM microkernel, the total number of assert
statements increased by roughly 30% but the total number of lines of code doubled. In IBM’s
CLOCK, PWRM, and TRACE modules, there are only 20 assert statements in over 20,000 lines
of newly developed IBM code. IBM marketed the microkernel as a more robust implementation
of Mach and we find the lack of asserts in the newly developed code disturbing.

Overall, the average number of lines of code per procedure increased by a minimum of 20%
in all the IBM code. IBM significantly increased the size of code by 73% and also increased the
comment ratio by 4%. In IPC, VM, and KERN only 20 more procedures/functions were added
despite the reduction in functions in the IPC module. However, in these modules IBM added over
15,700 lines of new code. For the most part, this indicates that IBM enhanced existing functions
rather than devising new functions in these modules. IBM often split a single function into two
functions, in order to allow the new function to be called from some other function. However,
new features like the compression cmp_pager for the embedded microkernel, required new code
be devised.

Table 5(a) provides execution performance of the IBM microkernel on the IBM PowerPC

18 Brett D. Fleisch, Mark Allan A. Co

| Test | Time (us) || System | CPU, MHz | ~MIPs | pus | ~NMIPsxys |
Null RPC 13.89 L3 486, 50 10 10 100
Thread Create 55.72 LRPC FF-CVAX 2 157 314
Thread Terminate 34.28 QNX 486, 33 6.6 76 502
Task Create 107.46 IBM MK | PPC 604, 100 60 14 840
Task Terminate 63.84 Amoeba 68020, 15 1.5 800 1200
VM Allocate 12.11 Mach 486, 50 10 230 2300
VM Deallocate 7.48 Dash 68020, 15 1.5 1920 2880

Table 5: (a)Performance Evaluation Results. (b)Null RPC comparisons.

604/100MHz. We could not perform multi-machine testing of the microkernel because the deliv-
ered code did not work with the on-board Ethernet chip set supplied with the PowerPCs.* Thus,
only single site performance measurements are presented. These measurements include time to
perform a null RPC, create and terminate tasks and threads, and time to allocate and deallocate
memory'. In Table 5(b) only the IBM MK was measured directly; the remaining performance
data taken from Liedtke for comparison purposes[10]. These results show that the IBM microker-
nel has better RPC performance than Amoeba, Mach, and Dash. IBM did not surpass the speed
of L3, LRPC, or QNX in RPC tests.

Workplace OS Project History

To reiterate, the basic premise of Workplace OS was: 1) IBM would adopt and improve the
CMU Mach 3.0 microkernel for use on PDAs, the desktop, workstations, and massively parallel
machines, and 2) that several operating system personalities would execute on the microkernel
platform concurrently. This strategy required machine independence, multiple personalities, and
concurrent operation of personalities. In the previous sections of this paper, we focused on the
microkernel. We now turn our attention to project history and issues in personality development.

In January 1991 the project was conceived. The first presentation of IBM’s new operating
systems strategy was given to internal management with a chart referred to as the Grand Unifi-
cation Theory of Operating Systems (or GUTS, for short). GUTS outlined how one microkernel
would unify several operating systems with common “subsystems”. At the end of 1991, a small
team from Boca Raton, Florida and Austin, Texas had been formed to begin work on a version
of the Mach Microkernel to support OS/2, the lead personality. In the summer of 1992, the
prototype was underway and there was good progress. IBM successfully demoed OS/2, DOS,
DOS/Windows, and Unix running on the Mach microkernel at the Fall Comdex in 1992.

Soon after, IBM announced plans to develop OS/2, DOS, and Unix as microkernel personalities
for both PowerPC and Intel architectures[17]. Internal discussion at IBM focused on AIX. Finally,
at Comdex in 1993, IBM Chairman Louis Gerstner announced that the microkernel would not

*IBM acknowledged this difficulty and suggested we purchase additional Ethernet boards. We ordered these
boards after providing precise part numbers, receiving them, and installing them. However, when we installed
them, the microkernel still did not communicate on the network.

fThese are single page vm_allocate/vm_deallocate tests.

‘Workplace OS 19

replace AIX. IBM realized that many AIX users would not accept performance penalties associated
with microkernel systems. IBM was also concerned with the microkernel presenting a competitive
impediment against high performance HP or Sun Unix systems than ran directly on the hardware.
Instead, Gerstner told AIX customers that they would be able to migrate to Workplace OS, later
if they were interested.

Intense Workplace development followed. IBM divided five major personality projects across
separate divisions. Each division was required to support their own OS personality on the mi-
crokernel. Reports indicated there were over 400 microkernel programmers[15] and 1500 OS/2
programmers|[16] geographically distributed in different divisions working on Workplace. In addi-
tion, a microkernel business unit was established to market the microkernel and create University
relationships. Further, in conjunction with microkernel development, IBM planned to offer work-
stations based on the Motorola PowerPC which was touted as a more economical RISC machine
that would execute personalities compatible with the Intel processor. A Power Personal Systems
Division was established with development facilities in Austin, Texas, Boca Raton, Florida and
Yamato, Japan. The Division defined the PowerPC systems standard and planned to sell systems
that ran all personalities. The PReP (PowerPC Reference Platform) specification was created to
specify the structure of the components for PowerPC machines[15]. In addition, IBM planned to
push for acceptance of the microkernel as a new standard through the OSF Research Institute
where many of the microkernel enhancement ideas originated.

In May 1994 the division director of RISC Systems software announced plans to study an
AIX personality for Workplace. A small internal research team of less than ten members was
assembled and led by an IBM Research Fellow. The press announcement included information
that indicated a significant problem with development of the AIX personality was that of byte-
ordering. IBM reminded customers that monolithic AIX runs perfectly well on the PowerPC and
that IBM needed time to address this difficult endian problem.

IBM was silent on the issue of AIX for approximately seven months. However, in January
1995, IBM announced the AIX personality effort would be halted and an AIX personality for
Workplace would not be built. Instead in February, IBM announced that it would offer a non-
AIX personality for Workplace. The new UNIX personality was meant for users that might
otherwise find themselves rebooting between microkernel OS/2 and AIX. However, this effort was
not well received and later abandoned.

In October 1995 IBM finally announced the general availability of Version 1 of the microkernel
for the PowerPC. In the first year of release, IBM had several commercial vendors and Univer-
sities that adopted the microkernel including Digital Equipment Corporation, LG Electronics
(Goldstar), Komatsu, Trusted Information Systems, and Bell-Northern Research. In addition,
Universities such as Carnegie-Mellon University, Notre Dame, Oregon Graduate Institute, Uni-
versity of California at Irvine and Riverside, University of Texas, Arlington, Helsinki University
of Technology, Tokyo University, and Cornell University were using IBM’s microkernel for their
research.

Later in October, media reports began to circulate that the PowerPC 620, which was the basis
for the new improved desktop PowerPcs, was bug-ridden. Shortly after this news, IBM cancelled
the Workplace project and folded the Power Personal Division. The latest and last release of the
microkernel, version 2.0, was distributed to microkernel adopters early the following year. The
final release supported the Motorola PowerPC, Intel x86, and the ARM(Advanced RISC Machine)
embedded processor. Approximately one year after cancellation of Workplace OS, the IBM Boca
Raton, Florida facility was closed.

Table 6 summarizes events or assumptions versus outcomes associated with IBM microkernel

20

Brett D. Fleisch, Mark Allan A. Co

Personality Assumptions or Events

| Personality Outcomes

UNIX, OS/2, 0S/400, Windows would
run side-by-side on the microkernel as
personalities.

0S/2 and Windows-NT ported to PowerPC
without IBM microkernel.

PowerPC price/performance would attract
customers along with a multi-personality op-
erating environment.

Delays in introduction of software and hard-
ware reduced performance advantage of Pow-
erPC. Without personalities, PowerPC in-
compatibilities outweigh benefits.

IBM invites Apple to adopt the microkernel
for Mac OS.

Apple refuses microkernel adoption and states
that the microkernel has excessive resource re-
quirements. About one month later IBM an-
nounces a marketing study indicating there
is no customer demand for Mac OS on the
PowerPC.

IBM announces a study of a Workplace AIX
personality. Although OS/2 and the micro-
kernel were Little Endian and AIX was Big
Endian, IBM would address this by assigning
an IBM Fellow to “crack the problem” along
with IBM’s best research minds.

AIX personality abandoned in January 1995
and IBM denies any original plans to sup-
port an AIX personality. IBM cited success
of monolithic AIX on PowerPC and contin-
ued work on OS/2. Privately, some IBM ex-
ecutives admitted Workplace was dead.

In February 1995 IBM announces non-AIX
personality for the microkernel described by
IBM as a variant of AIX with a non-AIX APIL.

A new version of UNIX is not welcomed. The
media expresses concerns whether Workplace
will be successful.

In March 1995 IBM clings to late summer re-
lease date for OS/2.

In June 1995 IBM ships PowerPCs with
monolithic AIX and Windows-NT. In July
1995 IBM quietly announces it will have Mac
OS on PowerPCs next year.

In October 1995 reports circulate that the
PowerPC 620 is bug-ridden.

IBM announces end of Power Personal Divi-
sion and the end of the microkernel strategy.
One year later IBM Boca Raton was closed
permanently.

Table 6: Assumptions/Events and Outcomes in Personality Development

personalities. The most significant problems with the Workplace project concerned underestimat-
ing the difficulty of implementing personalities, rather than issues associated with microkernel
development.

Observations and Lessons

Experience can be a good teacher in the design and analysis of computer systems. We can learn
a great deal from engineering failures, perhaps more than from successes. We offer the following
postmortem of Workplace based on our experience and intuition concerning the design of large
software systems:

‘Workplace OS 21

1. IBM underestimated the difficulty in creating personalities. Each personality required ex-
tensive restructuring to support shared PNSs. These divisions were not always easy to
delineate or implement as common subsystems. PNSs require that personality designers
communicate effectively to reach common agreement on goals and implementation strate-
gies for shared services.” Also, co-existence of ABI-compatible personalities with different
“endian-ness” presented insurmountable problems. Thus, personalities would fail to emerge
and generalize for concurrent use on the microkernel. It was easier to create a strategic busi-
ness plan for the financial markets rather than a working operating system with multiple,
cooperating personalities.

2. The IBM microkernel suffered from the “second-system effect” [6] where the second system
is embellished with frill after frill. The general tendency is to over-design the second system
and to propose overly ambitious and generalized functions.

3. IBM considered personalities late in the project as compared to the microkernel where it
placed considerable effort on functionality, efficiency, and portability early in the design. In
contrast, in Windows-NT, personalities were considered early in the design and there was
no emphasis on generalizing the NT microkernel to all products.

4. Liedtke[11] argues that microkernels are hardware dependent similar to optimizing code
generators. He argues that not only the coding, but even the algorithms used inside a
microkernel and its internal concepts are extremely processor dependent. Workplace’s failure
supports the claim that a new processor may require a new microkernel design. However,
the success in building Version 2.0 which runs on the Intel, PowerPC, and ARM processor,
provides partial refutation.

5. It was poor judgment for IBM to require all divisions to support the microkernel until
more research had been conducted on its applicability across the diverse product lines, the
applicability across existing software products, and to have one prototype with all essential
personalities. In addition, IBM should have marketed personality-based PowerPCs after
having the essential personalities prototyped. Associating the success of Power Personals
with the success of personality development was unwise.

6. Sound software engineering practices and more effective management may have improved
coordination and allowed divisions better responsiveness in creating the product. PNSs re-
quire that personality designers communicate effectively to reach agreement on delineations.
Effective management is needed to reach compromises and manage coordination of these
efforts.

Conclusion

The IBM microkernel project resembled the IBM /360 project. Both were designed for a family
of computers spanning the range from small machines to large scientific computers. Only one
set of software was envisioned for these systems and this aspect was supposed to reduce the

*Brooks [6] p.16-19 has a good discussion of the problems that arise on large software projects when there is a
need to communicate between parties.

22 Brett D. Fleisch, Mark Allan A. Co

| Feature | Summary Evaluation |
IPC Simplified code & improved performance using synchronous IPC.
Threads Performance-enhanced for RPC; adapted to support flexible

scheduling policies.
Power Management | Complete power subsystem added with APIs and SPIs; power sen-
sitive devices managed through the Framework.

Virtual Memory Direct user-to-user copy support; improved paging policies; support
for embedded systems with small memories.

Logical Clock Support for real-time systems.

Code Evaluation Average lines per procedure or function 20% larger; too few asserts
in new code; VM more complex; better RPC performance than
Mach.

Security Better security and authorization mechanisms; improved efficiency

for fast RPC.

Table 7: Workplace Component Evaluation

maintenance problems for IBM and allow users to move programs and applications freely from
one IBM system to another. The IBM/360 tried to be all things for all people[14] and as a result,
did none of its tasks especially well. The system was written in assembly language by thousands
of programmers, resulting in millions of lines of code. The microkernel involved hundreds of
programmers that produced thousands of high-level instructions that never made their way into
a significant commercial product.

The failure of Workplace OS can be attributed to 1) failure of personalities to generalize beyond
their tested previous scope and 2) overly grandiose ambitions for using the microkernel on all IBM
products. In isolation, Workplace microkernel components seemed well considered and reasonably
carefully designed as shown in Table 7; IBM worked closely with OSF Research Institute during
the design. Indeed, the final version of the microkernel, Version 2.0, operated on PowerPCs, Intel
machines, and the ARM processor. However, when the components were combined, Workplace
was an overly embellished system. In the final analysis, the failure of Workplace can be attributed
to the lack of personalities and a vision for the microkernel that suffered from the second-system
effect. This led IBM to one of the largest operating system failures in modern times.

REFERENCES
1. B. Beizer. Software Testing Techniques. Van Nostrand Reinhold, New York, 2nd edition, 1990.
2. D. R. Cheriton. The Thoth System: Multi-Process Structuring and Partability. Elsevier, North Hol-

land, 1982.

3. M. Condict, D. Bolinger, E. McManus, D. Mitchell, and S. Lewontin. Microkernel modularity with
integrated kernel performance. Technical report, Open Software Foundation Research Institute, Cam-
bridge, Mass, 1994.

4. Thomas Drake. Measuring software quality: A case study. Computer, 29(11):78-87, November 1996.

5. Bryan Ford and Jay Lepreau. Evolving mach 3.0 to a migrating thread model. In USENIX Conference
Proceedings, pages 97 114, San Francisco, CA, Winter 1994. USENIX.

6. Jr. Frederick P. Brooks. The Mythical Man-Month: Essays on Software Fngineering. Addison-Wesley,
1982.

11.

12.

13.
14.

15.
16.
17.
18.

‘Workplace OS 23

Graham Hamilton and Panos Kougiouris. The spring nucleus: A microkernel for objects. In USENIX
Conference Proceedings, pages 147-159, Cincinnati, OH, Summer 1993. USENIX.

IBM. IBM microkernel: Overview and Programming Guide Release 2.0, March 1996.

IBM. IBM microkernel: Power Management Programming Reference Release 2.0, March 1996.

. Jochen Liedtke. Improving ipc by kernel design. In 1/th ACM Symposium on Operating System

Principles (SOSP), pages 175-188, Asheville, NC, December 1993. ACM.

Jochen Liedtke. On microkernel construction. In 15th ACM Symposium on Operating System Prin-
ciples (SOSP), pages 237-250, Copper Mountain, CO, December 1995. ACM.

Larry Loucks, Ravi Manikundalam, and Freeman Rawson ITI. A microkernel-based operating system
for personal digital assistants. In Proceedings of the Fourth Workshop on Workstation Operating
Systems. IEEE, October 1993.

Marion Schalm, Jean Wolter, and Michael Hohmuth. L3 documentation, December 1995.

A. Silberschatz and P. Galvin. Operating System Concepts. Addison-Wesley Publishing Company,
Inc., 1995.

Tom Thompson and Bob Ryan. Apple, IBM Bring PowerPC To the DeskTop, April 1994.

New York Times. IBM Set To Introduce its Latest Os/2 Software, September 25, 1996.

Unknown. Windows NT and Workplace OS:plug it in. Byte Magazine, 19(1):166, January 1994.
Uresh Vahalia. UNIX Internals: The New Frontiers. Prentice Hall, Upper Saddle River, New Jersey
07458, 1996.

